
Candidate Genes and Genetic Architecture of Symbiotic
and Agronomic Traits Revealed by Whole-Genome,
Sequence-Based Association Genetics in Medicago
truncatula
John Stanton-Geddes1., Timothy Paape1., Brendan Epstein1, Roman Briskine2, Jeremy Yoder1,

Joann Mudge3, Arvind K. Bharti3, Andrew D. Farmer3, Peng Zhou4, Roxanne Denny4, Gregory D. May3,

Stephanie Erlandson1, Mohammed Yakub1, Masayuki Sugawara5, Michael J. Sadowsky5,

Nevin D. Young1,4, Peter Tiffin1*

1 Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America, 2 Department of Computer Science and Engineering, University

of Minnesota, Minneapolis, Minnesota, United States of America, 3 National Center for Genome Resources, Santa Fe, New Mexico, United States of America, 4 Department

of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America, 5 Department of Soil, Water, and Climate, and BioTechnology Institute,

University of Minnesota, St. Paul, Minnesota, United States of America

Abstract

Genome-wide association study (GWAS) has revolutionized the search for the genetic basis of complex traits. To date, GWAS
have generally relied on relatively sparse sampling of nucleotide diversity, which is likely to bias results by preferentially
sampling high-frequency SNPs not in complete linkage disequilibrium (LD) with causative SNPs. To avoid these limitations
we conducted GWAS with .6 million SNPs identified by sequencing the genomes of 226 accessions of the model legume
Medicago truncatula. We used these data to identify candidate genes and the genetic architecture underlying phenotypic
variation in plant height, trichome density, flowering time, and nodulation. The characteristics of candidate SNPs differed
among traits, with candidates for flowering time and trichome density in distinct clusters of high linkage disequilibrium (LD)
and the minor allele frequencies (MAF) of candidates underlying variation in flowering time and height significantly greater
than MAF of candidates underlying variation in other traits. Candidate SNPs tagged several characterized genes including
nodulation related genes SERK2, MtnodGRP3, MtMMPL1, NFP, CaML3, MtnodGRP3A and flowering time gene MtFD as well as
uncharacterized genes that become candidates for further molecular characterization. By comparing sequence-based
candidates to candidates identified by in silico 250K SNP arrays, we provide an empirical example of how reliance on even
high-density reduced representation genomic makers can bias GWAS results. Depending on the trait, only 30–70% of the
top 20 in silico array candidates were within 1 kb of sequence-based candidates. Moreover, the sequence-based candidates
tagged by array candidates were heavily biased towards common variants; these comparisons underscore the need for
caution when interpreting results from GWAS conducted with sparsely covered genomes.
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Introduction

Legumes are a highly diverse plant family that contains many

economically important species including soybean, peanuts, and

alfalfa. Legumes are especially important because they host

rhizobial symbionts, which when growing in symbiosis inside of

root organs called nodules, convert atmospheric nitrogen (N) into

plant usable forms. This symbiosis annually contributes .50

million metric tons of N to managed ecosystems and twice this

amount to natural ecosystems [1,2]. The biochemical and genetic

basis of this interaction has been the subject of decades of research

and mutational screens have identified many genes involved in the

establishment and maintenance of nodules and nitrogen fixation

[3]. In many of these studies, Medicago truncatula, a diploid self-

fertilizing species with a sequenced reference genome [4] has

played a central role as a plant model [5]. The genomic resources

available for Medicago truncatula have also made this a valuable

model system for investigating the genetic basis of agronomic traits

in legumes and other crop species [5]. To further the development

of M. truncatula as a model for investigating the genetics of complex

traits, including legume-rhizobia symbiosis, we developed resourc-

es for conducting genome-wide association study (GWAS).

GWAS, like traditional bi-parental quantitative trait locus

(QTL) mapping, aims to identify genes responsible for naturally

occurring phenotypic variation but allows for screening a much
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larger panel of accessions and, because of ancestral recombination,

mapping candidate genes to a much finer scale than is possible in

traditional QTL mapping [6]. While gene discovery is an

important goal of GWAS, association analyses also provide a

valuable tool for investigating the genetic architecture of complex

traits. Although GWAS has, to date, been conducted primarily

with reduced representation sampling of genomic diversity (e.g.

SNP arrays) such sampling is expected to be biased against the

detection of low frequency variants [7], miss SNPs that are not in

high linkage disequilibrium with causative SNPs [8,9], falsely

identify SNPs because they define the genetic background on

which causative SNPs are present (i.e. synthetic associations) [10],

and limit the scale to which putative causative SNPs can be

mapped. To avoid these limitations we sequenced a diverse sample

of 226 M. truncatula accessions to ,8X mean coverage (Figure S1).

After aligning sequence reads to the M. truncatula reference genome

[4] we identified 6,344,526 bi-allelic SNPs that were assayed in

.100 accessions with minor allele frequency (MAF) .0.02 (MAF

refers to the frequency of the SNP allele that is present in fewer

that 0.5 of accessions). These 6.3 million SNPs provide an average

of 1 SNP every 43 bases, considerably shorter than the average

distance over which LD decays [11].

Our primary goals in this work were to i) explore the genetic

architecture of complex traits by investigating the proportion of

among accession variance that can be explained by candidate

SNPs and the relationships between minor allele frequency and

effect size, ii) identify candidate genes underlying important

developmental and symbiosis traits, and iii) empirically explore

bias associated with conducting GWAS with reduced-representa-

tion SNP arrays relative to sequence data.

Results and Discussion

Phenotypic data on three developmental (height, flowering time,

and trichome density) and five nodulation traits (total number of

nodules and nodule number and strain occupancy in the upper

and lower roots) were collected from each of 226 plant accessions

grown in replicate and co-inoculated with two strains of

Sinorhizobium meliloti. The sample of 226 accessions is much smaller

than used in human GWAS studies, where sample sizes often

exceed 10,000 individuals, but is larger or similar to the number of

accessions used in GWAS in A. thaliana [12,13,14], D. melanogastor

[15], Oryza sativa [16], and Z. mays [17,18], in which phenotypic

data can be collected in common environments on replicated

genotypes. Because M. truncatula genotypes differ in the number of

nodules they form with different rhizobia strains [19,20] and

rhizobia strains can vary in competitiveness (i.e. formation of

nodules on young plants) [21], the root system of each plant was

divided into upper and lower portions, the former portions

showing early nodulation events [22]. The eight traits exhibited

significant among-accession variation, ranging from 22% (strain

occupancy in lower roots) to 74% (flowering) of the total variance

(Table 1, Figure S2).

To identify candidate genes responsible for the among-accession

variation we conducted GWAS with .6 million SNPs present at a

MAF .0.02 using the mixed linear model [23,24,25] approach

implemented in TASSEL [26]. Visual inspection of quantile-

quantile (q-q) plots indicated that inclusion of a kinship-matrix (K)

covariate removed the major effects of population structure and

unequal relatedness among individuals that can bias GWAS

(Figure S3). Preliminary analyses revealed that inclusion of

additional measures of population structure, such as those

obtained from STRUCTURE, had only very minor affects on

the shape of the q-q plots or the top ranked SNPs and thus were

not included in the final analyses. While including covariates

describing kinship or population structure is important to reduce

the numbers of false positives obtained in GWAS, including such

covariates may also weaken the statistical power to identify genes

responsible for trait variation when a phenotype covaries with

relatedness [12,13]. For our data, the first ten PCs of the K matrix

explained from 6–36% (nodule number and flowering time,

respectively) of variation among accessions.

Genetic architecture
For exploring genetic architecture we considered genes

containing or adjacent to the 200 SNPs with the smallest P-values

as candidates underlying phenotypic variation in each trait (Data

File S1). Although this is a non-stringent criterion for identifying

candidate genes and this list of candidates is therefore expected to

contain false positives, the non-stringent criterion allows for the

inclusion of SNPs of small effect, which would not be detected

using stringent P-values but may be important contributors to

complex trait variation and thus are important to consider when

investigating genetic architecture. Genomic distributions of the top

200 candidate SNPs differed dramatically among traits (Figure 1,

Figure S4). For most of the assayed traits candidates are spread

across the genome and few candidate SNPs were in high LD with

one or more other candidates (Table 1). For example, for nodule

number in lower roots there are no clusters of candidate SNPs

greater than 13 kb in length and only 14% of pairwise LD

measures (r2) are .0.3. By contrast, the strongest candidates for

flowering time and trichome density are in clusters of high LD.

The clustering of flowering time SNPs is particularly distinct, with

.75% of candidate SNPs within ,800 kb on chromosome 7.

Interestingly GWAS conducted in rice and A. thaliana [12,16,27]

also identified SNPs controlling flowering time also form clusters of

high LD, suggesting that few genes of fairly large effect may

control a considerable amount of the variance in flowering time in

each of these species. The extensive LD among flowering time and

trichome density candidate SNPs also suggests that selection may

maintain functionally divergent alleles, that alleles are subject to

local adaptation, or have experienced recent soft-sweeps [28].

Mean MAF of candidate SNPs also differed significantly among

traits (F df = 7,1590, P,0.0001, Table 1), ranging from 0.06 for

trichome density to 0.21 for height. Candidates underlying

variation in plant height had significantly greater mean MAF

than either genome-wide SNPs (mean MAF = 0.09) or candidate

SNPs for other traits (all P,0.0001, Figure S5), and candidates for

flowering time (MAF = 0.16) had significantly greater MAF than

all SNPs as well as candidates for all traits except height and

nodule number (all P,0.01). Given that height and flowering time

are likely subject to stabilizing selection, the greater MAF for these

traits may reflect spatial variation in fitness optima or weak

selection due to a fitness plateau near an optimum [29].

Variance explained by top candidate SNPs
If the candidate SNPs identified through GWAS act additively

and capture the majority of genomic variation for that trait, than

we would expect a high proportion of the phenotypic variation in a

trait be explained in a linear regression in which the candidate

SNPs are used as explanatory variables. For our data, linear

regression using the top 50 candidate SNPs as potential

explanatory variables (17–33 SNPs retained after model simplifi-

cation by AIC depending on the trait) explained 41–75% of

among-genotype variance (r2) in phenotypes (Table 1). These

values are similar to r2 values for GWAS candidate SNPs

underlying startle response and starvation resistance in Drosophila

melanogaster [15]. However, these values are biased because

Sequence-Based GWAS in Medicago
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candidates used in the linear regression were pre-selected from all

assayed SNPs based on their association with phenotype, i.e. the

Beavis effect or winner’s curse [30,31]. In other words, even if the

phenotypes are randomly associated with genotype we expect the

r2 values of the linear regression to be greater than zero because

the 50 SNPs used in the linear regression are those that GWAS

identified as having the highest covariance with the phenotype of

interest. For this reason, for three traits we generated approximate

null expectations by conducting linear regression using SNPs

identified by GWAS on data sets in which phenotypes were

randomly assigned to genotypes (due to computational demands

Table 1. Proportion of variance attributed to accessions and linkage disequilibrium for top 50 candidates SNPs.

trait

Among
accesion/total
variance

Proportion
top 50 SNPs
not in LD
(r2,0.8)

Proportion
top 50 SNPs
not in LD
(r2,0.3)

Linear regression
r2 (SNPs in final
model)

correlation between MAF and
effect size, top 200 SNPs (P-
value)

Height 0.58 0.98 0.91 0.75 (33) 20.12 (0.10)

Flowering 0.74 0.89 0.59 0.64 (31) 20.05 (0.48)

Trichomes 0.45 0.32 0.68 0.41 (17) 0.22 (0.002)

Nodules on upper roots 0.34 0.95 0.73 0.65 (27) 0.01 (0.93)

Nodules on lower roots 0.35 0.98 0.86 0.69 (32) 20.21 (0.002)

Total nodules 0.38 0.99 0.94 0.74 (30) 20.08 (0.24)

Strain occupancy in upper roots 0.24 0.98 0.92 0.67 (27) 0.10 (0.14)

Strain occupancy in lower roots 0.22 0.96 0.87 0.61 (24) 0.17 (0.01)

doi:10.1371/journal.pone.0065688.t001

Figure 1. Manhattan plots showing candidate SNPs. (a) Flowering time, (b) nodules in lower roots and (c) nodule occupancy in lower roots.
Colors indicate MAF of top 200 SNPs. Y-axis shows –log10(P) and X-axis is the physical location along each of the 8 chromosomes, uncaptured
transcribed contigs (T), unanchored BACs (U).
doi:10.1371/journal.pone.0065688.g001
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these approximate distributions are based on only 20 randomiza-

tions per trait).

Mean r2 values of linear regression on randomized data ranged

from 0.59 for strain occupancy to 0.65 for height (Table S1).

Assuming the total trait phenotypic variance that can be

potentially explained by true causal SNPs is then uniformly

distributed between the mean of the randomized data and one, the

top 50 candidate SNPs explain 21–29% of the remaining variance

for height and nodules in the lower root system. In contrast the

proportion of variance explained by candidate SNPs for strain

occupancy in lower roots is well within the range of values

generated from the randomized datasets (Table S1). For all three

traits, however, the MAF distribution of the empirical data differs

from that of the randomized data – for all three traits rare alleles

are underrepresented and common alleles are overrepresented in

the empirical compared to randomized data – suggesting that even

candidate SNPs for strain occupancy in lower roots may be

biologically meaningful.

Two of the traits subject to the randomization analyses, height

and nodules in lower part of roots, exhibit negative correlations

between MAF and estimated effect size (i.e. the predicted

phenotypic difference between SNP variants) (Table 1), similar

to findings in Drosophila melanogaster [15]. For height the empirical

correlation is less than all those from randomized data, for nodules

the correlation of the top 50 SNPs is less than all randomized

values and for the top 200 SNPs the empirical correlation was less

than all but one of the randomized values (Table S1). Negative

correlations between allele frequency and effect size are consistent

with mutation selection balance models for the maintenance of

genetic variation in quantitative traits [29,32]. By contrast, the

empirical correlation for strain occupancy was positive and well

within the range of randomized values (Tables 1 and S1).

Candidate genes
Many of the genes tagged by candidate SNPs have annotated

functions that support a role in contributing to variation in the

corresponding phenotype. For flowering time, the highest ranking

(P = 361029, P,0.05 after a conservative Bonferroni correction

for multiple tests) as well as 7 other candidate SNPs are adjacent to

MtFD, an uncharacterized gene in Medicago but with high sequence

similarity to A. thaliana FD which controls expression of floral

identity genes [33,34]. In the same SNP cluster, 300 kb away from

MtFD, lies the third highest ranking SNP (P = 961029, P,0.05

after a conservative Bonferroni correction for multiple tests) within

a FAR1 homolog, a gene family containing members involved in

light signaling and flowering time [35]. The cluster of flowering-

time candidates identified through GWAS lies within a bi-

parentally mapped QTL that contains several other genes that

affect flowering time, including CONSTANS and FT homologs

[36]. These genes harbor SNPs in our association panel but are

not identified as candidates in our analyses. The identification of a

common region in both a biparental mapping population [36] and

the current GWAS study provides strong support that these

candidates are not false positives resulting from population

structure that is not controlled for by the inclusion of the K

matrix in the linear model used to identify candidates. At the same

time, colocalization of traditionally mapped QTL and GWAS

candidates shows the power of sequence-based GWAS to more

finely map the causative SNPs underlying biparentally-mapped

QTL (although we note it is possible that variants responsible for

differences between two individual lines may differ from those that

can be detected in a population sample that is used in GWAS). For

trichome density, the other trait that shows strong single-locus

effects, a cluster of candidates (smallest P = 1.861029, P,0.05

after a conservative Bonferroni correction for multiple tests) is

centered at a MADS-box transcription factor, a family of genes

with roles in plant development. The potential for MADS-box

genes to affect trichome production has been shown in Petunia

where constitutive expression of the MADS-box gene UNSHAV-

EN causes ectopic trichome production [37].

We find that many candidate SNPs responsible for variation in

nodule traits, considering the 200 SNPs with smallest P values as

candidates, are located within or near genes that forward genetics

previously identified as involved in nodule formation and

symbiosis (Table 2). In addition to the candidate SNPs that

tagged characterized genes with known nodulation phenotypes,

three strain occupancy candidates were contained within a

biparentally mapped QTL for differential response to nod factors

and strain specific nodule occupancy [38]. Although this QTL

contains several LysM genes involved in nod-factor perception, the

candidate SNPs we identified are neither in nor adjacent to these

genes. However, the genomic structure of the QTL region from

the biparental mapping population [38] and that in the M.

truncatula reference genome [4,38] differ, suggesting this region

segregates multiple arrangements within M. truncatula. Such

rearrangements make it possible that the candidates we identified

are closer to LysM genes in some accessions than they are in the

reference genome. Alternatively, other genes within the QTL that

are tagged by candidate SNPS (LRR containing HCR6, HCR7

[homologous to Cladosporium fulvum (Cf) resistance] and unchar-

acterized B, F genes) may contribute to differences in strain

occupancy, or the GWAS candidates may tag distant regions

involved in gene regulation.

Also noteworthy is that the top two candidate SNPs underlying

variation in the strain occupancy in the lower roots (P = 6.561027,

161026) tag uncharacterized genes with evidence for expression in

the nodules and roots only. Candidates underlying variation in

nodule number are also overrepresented among genes with

nodule- or root-specific expression; 8 of the top 20 SNPs (40%)

associated with the number of nodules in lower roots that tag

expressed genes show complete nodule- or root-specific expression,

by comparison only 850 of the 21,000 genes (4%) located on

chromosomes 1–8 for which expression was assayed show nodule

or root specific expression (P,0.001). One of these eight genes is

annotated as a nodule-specific glycine rich gene, a member of a

small gene family involved in nodule development [39], however,

the other seven (annotated as encoding albumin, PRP, RNA-

binding, a U-box containing and three hypothetical proteins) have

not been previously identified as affecting nodule traits.

Reduced representation compared to sequence-based
genotyping

The vast majority of GWAS have been conducted using

genomic markers that provide much sparser genome coverage

than sequence data. Although full sequence data is expected to

soon be available for model systems, there is considerable interest

in using reduced-representation genotyping (such as genotype-by-

sequencing (GBS; [40]) restriction-site associated DNA (RAD-tag;

[41]) in order to conduct GWAS in non-model species. Reduced-

representation genotyping is appealing because of the lower

financial costs and less demanding bioinformatic analyses;

however, if sparsely sampled SNPs strongly bias GWAS results

such studies may be misleading with regard to identification of

causative variants and genetic architecture [7,8,9]. To assess the

extent of this potential bias we conducted 100 GWAS for three

traits using in silico 250 K SNP-platforms. The in silico platforms

were generated using a discovery panel of 26 accessions that had

been sequenced to median mapped coverage of ,15X [11]. From

Sequence-Based GWAS in Medicago
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these data we selected a single SNP from each of 224,339 1-kb

windows that harbored segregating sites and an additional 25,662

random SNPs to produce 250 K assayed SNPs. Given that LD in

the discovery panel extends an average of ,3 kb [11], 1 SNP kb-1

provides relatively high density SNPs in both physical and

recombination distances.

The comparison of GWAS with in silico arrays compared to the

sequence data revealed that candidates identified by the in silico

arrays were often distant from the top sequence-based candidates

and highly biased towards common variants. With regard to in

silico candidates being located close to sequence candidates, the

best performance was for height where an average of 14 of the top

20 and 19 of the top 50 in silico SNPs were within 1 kb of one of

the top 200 sequence-based candidates, and 17 of the top 20 and

30 of the top 50 in silico SNPs were within 20 kb of a sequenced

candidate (Table 3). By comparison, ,60% of in silico candidates

were within 20 kb of a sequence-based candidate for nodule

number and occupancy in the lower roots. Not only were many in

silico candidates not within 20 kb of sequenced-based candidates,

but the tagged SNPs were not a representative sample of the

empirical candidates. For all traits, there were far fewer low-MAF

candidates from in silico than sequence data (e.g. 13 vs. 41% SNPs

with MAF ,10% for height, P,0.0001, Figure 2, Figure S6). This

bias towards high-frequency candidates in the in silico data is

expected given that in silico SNPs were ascertained from a 26

accession discovery panel. Moreover, because the array SNPs are

unlikely to be causative, but rather identified because they are in

LD with causative SNPs, the sequenced-based candidates that

were tagged by in silico candidates are even more heavily biased

towards common variants; across the three traits nearly 59% of

empirical SNPs have MAF ,10%, but only 15% of the platform-

tagged sequenced-based candidates have MAF ,10%. For height,

only 5% of the platform-tagged sequence candidates had MAF

,10%. Taken together, these results suggest that sequence-based

GWAS is likely to provide a very different picture of the genetic

architecture of complex traits than would be obtained using

reduced-representation genotyping data.

Conclusion
Genome wide association studies require high-density marker

data for a large number of accessions, by conducting whole-

genome sequencing and calling SNPs segregating among .250

accessions of Medicago truncatula this resource is now available for

other researchers. In addition, seeds for the accessions that

comprise the association panel we analyzed are publicly available.

Together, these resources provide a valuable resource for

identifying causal variants and the genomic architecture of

complex traits in legumes. Our GWAS of plant height, flowering

time, trichome density, and five nodule-related traits identified

both uncharacterized and previously characterized genes that are

Table 2. Characterized genes associated with candidate SNPs for nodulation traits.

Trait Gene name Function

Nodules upper roots Calmodulin CAML3 signaling during nodule formation [51]

NFP (Nod Factor Protein) nod factor receptor, acts upstream of other nod signaling genes [52]

SERK2 signaling during defense and development [53],

Nodules, total & lower roots MtnodGRP3A nodule development, nodule-specific expression induced by rhizobial infection [39]

chit4 chitinase with rhizobial strain-specific expression [54]

Total nodules MtN5 nod factor induced [55]

Occupancy upper roots Calmodulin CAML2 signaling during nodule formation [51]

MCA8 predominant ATPase functioning in symbiotic Ca2
+ signaling [56]

MtnodGRP1B Nodule specific glycine rich protein, expressed primarily in young nodules, in nodule apex [39]

MtNRT1.3 NO3
2 dependent expression, involved in primary root growth and NO3

2 sensing [57]

Occupancy lower roots MtHMGR3 strongly expressed in nodules, binds NORK which controls rhizobia infection [58]

MtMMPL1 nodulin with rhizobia-signal dependent expression, affects infection thread size and number of
viable bacteria inside of nodules [59]

doi:10.1371/journal.pone.0065688.t002

Figure 2. MAF distribution of genomic and candidate SNPs
(minor allele frequency .0.02) identified using sequence data
and 250 K SNP arrays. Shown are (a) all assayed SNPs, (b) sequence-
based candidates for height, (c) top 50 candidate SNPs from 100 in silico
platforms, and (d) distributions of sequenced based candidates within
1 kb of any of the top 50 in silico candidates.
doi:10.1371/journal.pone.0065688.g002
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likely responsible for naturally occurring variation in these traits.

In addition to identifying candidate genes for functional charac-

terization, our analyses highlight the advantages of high resolution

SNP data for studying the genetic architecture of complex traits

and provide an empirical example of the need for caution that

should be exercised when interpreting results from GWAS

conducted using sparse genotypic data.

Materials and Methods

We sequenced 288 Medicago accessions (www.medicagohapmap.

org/hapmap/germplasm) including the majority of lines contained

in the INRA core collection [42] (www1.montpellier.inra.fr/BRC-

MTR/). Prior to GWAS 62 accessions were excluded; 18 because

they are highly diverged from others (Figure S7) and 44 because

they were not phenotyped. Each accession was self-fertilized for

$3 generations prior to growing for DNA extraction. Paired-end

Illumina sequencing libraries (,200–450 nt insert sizes) were

prepared for sequencing according to standard methods [43] using

total DNA extracted from a pool of ,30 day-old dark-grown

seedlings. Libraries were sequenced using GAII or GAIIx Illumina

sequencing instruments to yield paired 90 mer or 151 mer reads

(trimmed to 90 mers for analysis). Illumina image analysis pipeline

with default parameters was used for base-calling, quality filtering,

and to remove adapter and PhiX contamination.

Reads that passed initial quality control filtering were aligned to

the M. truncatula reference genome v.3.5 [4] (www.

medicagohapmap.org) using GSNAP [44]. After excluding reads

,91% identical to a genomic region or that aligned to $5

locations we called SNPs when: i) a position was covered by $2

unique reads for the 26 accessions sequenced to ,15X mapped

coverage [11] (deep 26) or $1 unique read for other accessions,

with unique reads defined as those that align to only one position

in the reference genome (coverage information at www.

medicagohapmap.org), and ii) reads that called a non-reference

allele had a quality score $10 and variant nucleotides were called

by .70% of reads. The .70% of reads calling a variant means

that there are no heterozygous sites within individuals. This should

have minor effects given high selfing rates in natural populations

(.95%) [45,46] and $3 generations of selfing prior to DNA

extraction. Positions with .1000 (deep 26) or .500 unique reads

for shallow accessions were excluded to prevent variant calling

SNPs in repetitive regions that appear only once in the reference

genome. Sequence data are available at NCBI short-read archive

(SRP001874) and called SNPs for the 288 accessions are available

at www.medicagohapmap.org/downloads/mt35. Because of the

very high SNP density, an average of 1 SNP 50 bp21 in a species

in which previous analyses of genome-wide SNPs indicated LD to

extend an average of 3,000 bp [11], we did not impute missing

SNPs.

Phenotype data
During February 2011, seeds from each of 226 genotypes were

planted into bleach-sterilized 650 ml conetainers filled with an

equal mixture of steam-sterilized Sunshine Mix LP5 (low nutrient

potting soil) and Turface. Prior to planting, seeds were scarified in

sulfuric acid for 5 minutes, rinsed, sterilized in 10% bleach for 90

seconds, rinsed, and cold-stratified (4uC) on sterile filter paper for 4

days. Seeds were then placed in the dark at room temperature for

,16 hours prior to planting. After planting, one replicate from

each genotype was placed in each of eight randomized complete

blocks in a single greenhouse room (22uC, supplemental lighting

used to maintain a 16:8 hour light:dark cycle). Pots were adjacent

to one another and plants were top-watered with a fine mist

sprayer as necessary. Seeds for all accessions are available by

submitting an on-line seed request form at medicagohapmap.org

or by contacting INRA-Montpellier (Jean-Marie Prosperie) or the

Western Regional Plant Introduction Station (WRPIS) at Wash-

ington State University directly.

Plants were inoculated two days after planting with 1 ml (,107

cells) of a nearly equal mixture of two strains of S. meliloti, M249

and KH46c (55% and 45%, respectively, based on plate counts),

that preliminary experiments revealed to differ in nodulation

phenotypes. Innocula was grown in TY medium (30 uC,

,72 hours) then diluted 1:200 (KH46c) or 1:400 (M249) in

0.85% saline solution.

From the 1,899 plants that germinated and survived until

harvest, we collected data on height, flowering date, trichome

density, nodule number and rhizobia strain occupancy in the top

5 cm of roots (upper root) and roots below the top 5 cm (lower

roots), as well as total nodule number. Plant height (length from

cotyledons to tip of the farthest branch) was measured 10 weeks

after planting, 1 week before plants were harvested. Time to first

flower was assayed every 3–4 days starting 6 weeks after

emergence. Plants that did not flower at the time of harvest (11

weeks after planting) were treated as having not flowered in

analyses. For GWAS, flowering date was treated as a continuous

variable with 9 flowering dates and a 10th category for plants that

never flowered. Though this distribution was non-normal (Fig. S2),

the q-q plot was reasonable (Fig. S4) and was not improved by any

transformation (not shown). Trichome density was measured as

the number of trichomes visible at 10X magnification along a

2 mm section of the petiole of 1 fully expanded leaf. After harvest,

roots were washed and nodules counted in the upper and lower

roots. For plants from 6 blocks, #24 nodules (#12 nodules from

the upper root) were haphazardly sampled for strain occupancy

assays using a dot-blot antibody assay [47]. In brief, nodules were

dried (65uC, .48 hours), then rehydrated in 30 ul PBS, crushed,

and then the supernatant was blotted onto two nitrocellulose

membranes (BioRad) which were treated with one antibody each

(antibodies obtained from rabbit antiserums prepared using boiled

bacterial cells by Covance Inc, Denver PA). Membranes were

dried and a positive antibody reaction was visually scored by a

dark spot. Because anti-M249 antibody was less specific than anti-

KH46c antibody (determined by control blots on every mem-

brane), we grouped nodules into two classes: those that reacted

with anti-M249 only and those that reacted with either both

antibodies or anti-KH46c only. Strain occupancy data are

reported as proportion of total nodules formed by strain M249.

Table 3. Overlap in candidate SNPs identified using sequence
data compared to in silico SNP arrays.

top 20 top 20 top 50 top 50

1 kb 20 kb 1 kb 20 kb

Height 14.1
(9–19)

17.2
(12–20)

18.9
(12–26)

30.2
(22–38)

Nodule number
lower roots

9.4
(4–15)

11.5
(6–16)

14.0
(6–21)

21.2
(12–29)

Strain occupancy
lower roots

6.3
(2–12)

9.4
(4–16)

8.4
(3–16)

16.5
(10–25)

Shown are the average number of top 20 and 50 in silico candidate SNPs within
1 and 20 kb of one of the top 200 sequenced-based candidates. Data are from
100 250 K SNP in silico platforms, the minimum and maximum number of
tagged sequence candidates is in parentheses.
doi:10.1371/journal.pone.0065688.t003
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All phenotype data are available at datadryad.org dx.doi.org/

10.5061/dryad.pq143.

Genome-wide association analysis
GWAS and other analyses were conducted using the least-

squares means values for each accession after removing among-

block block differences. We used the efficient mixed-linear model

approach expedited (EMMAX [23], P3D [25]) as implemented in

TASSEL 3.0 [26] for association analyses using only SNPs scored

in $100 accessions (median coverage = 182 accessions) with

minor allele frequency (MAF) $0.02.

In all analyses, we included a kinship matrix (K) to lessen

confounding effects of population structure. The K matrix was

calculated in TASSEL using 5,000 randomly sampled SNPs from

each chromosome. Correcting for multiple testing in association

analyses is problematic because of the large number of tests and

dependency of P-values, as well as false discovery rates (FDR) on

the distribution of the data [12,48]. Therefore when exploring

genetic architecture we considered either the 200 SNPs or 50

SNPs with lowest P-values as candidates responsible for pheno-

typic variation. To identify annotated candidate genes and

examine expression of genes tagged by candidate SNPS we

treated SNPs falling within a coding region to tag that gene and

intergenic SNPs to tag the nearest adjacent gene. These analyses

were conducted only for SNPs found on one of the 8 assembled

chromosomes found in reference genome Mtv3.5. To identify

previously characterized genes that were tagged by candidate

SNPs we used BLAST to identify the Mtv3.5 genomic location of

440 named M. truncatula nuclear genes found in GenBank.

Candidate SNPs that were within 10 kb of a named gene were

considered as tagging that gene.

To estimate the proportion of phenotypic variance explained by

candidate SNPs, we extracted genotype information for the top 50

SNPs and included these in a multiple linear regression with

phenotype values as the response variable. Missing data were

treated as an additional state. After fitting the model with 50 SNPs,

we performed stepwise backwards model selection using the

function stepAIC in library MASS [49] in R [50], to drop SNPs

that did not improve the fit of the model more than expected for

additional parameters.

To generate approximate null expectations for the MAF

distribution of candidate SNPs, linear regression, and relationships

between MAF and effect size, we generated 20 randomized

datasets in which data for three phenotypes (height, nodules in

lower roots, and lower root occupancy by strain M249) were

randomly assigned to accessions (leaving genotype data intact). For

each randomized dataset, we repeated the TASSEL analysis and

fit a multiple linear model using the 50 SNPs with lowest P values

as explanatory variables. We calculated the mean and standard

deviation of the adjusted proportion of variance explained from

the 20 randomized datasets for each trait. For each randomized

data set we also calculated the correlation between the effect size

and MAF of the top 50 and 200 SNPs, and the number of SNPs

found with MAF 2–5%, 5–10% and .10%. We caution that

randomized data are approximate null expectations because, to

the extent that the K matrix is used in the mixed-linear model

analyses, the data are not fully exchangeable. Nevertheless, the q-q

plots of actual to expected P-values (Figures S3, S4) reveal little

evidence for shared demographic history that was not accounted

for by the inclusion of K in the GWA analyses.

In silico SNP platforms
To compare performance of GWAS with sequence data to

reduced representation genotyping platforms, we generated 100 in

silico platforms of 250 K regularly spaced SNPs. Each platform

was designed using SNP data from a 26-accession, deeply-

sequenced ascertainment panel [11]. From these data, a single

SNP (MAF .0.10) was randomly selected from each of the

224,339 1-kb windows that harbored segregating sites and an

additional 25,661 SNPs were randomly selected to generate a

genotyping platform with 250 K SNPs. An average of 195 K

SNPs per platform met the criteria of MAF .0.02 and assayed in

$100 accessions and therefore used in analyses. In silico GWAS

was conducted for three traits (height, nodules in lower root, and

occupancy in lower root) by extracting genotype and P- values for

SNPs on the in silico platform using the same methods used for the

sequence data.

Supporting Information

Figure S1 Mean coverage for each of the 226 accessions
included in the GWAS.

(TIF)

Figure S2 Histograms of accession means for each trait
(along the diagonal). Above diagonal are bivariate scatterplots

for the 226 accessions means, the line in each plot is the linear

correlation between traits. Below diagonal are correlation values

between each pair of traits.

(TIF)

Figure S3 Quantile-quantile (Q-Q) plots with and with-
out K for height and nodules in upper roots.

(TIF)

Figure S4 Manhattan, quantile-quantile, and LD (top 50
SNPs) plots for all traits.

(PDF)

Figure S5 Minor allele frequency (MAF) distribution of
all SNPs with MAF .0.02 and the top 200 candidates for
each of the eight phenotypic traits.

(TIF)

Figure S6 Histograms of minor allele frequency (MAF,
only SNPs with MAF .0.02 are included). a) Sequence-

based candidate SNPs, b) in silico candidate SNPs, and c) sequence-

based candidate SNPs within 1 kb of in silico candidates for

nodules in lower roots and strain occupancy in lower roots.

(TIFF)

Figure S7 Neighbor-joining tree based on 5,000 ran-
domly selected SNPs showing relatedness of all 288
sequenced accessions. Trees constructed with other 5,000

SNP samples were qualitatively similar. The distinct clade shown

in the middle of the tree represents the 18 accessions that were

removed prior to analyses.

(PDF)

Table S1 Results of GWAS conducted on 20 sets of
randomized data for each of three traits (height, nodules
in lower roots, and occupancy in lower roots).

(DOCX)

Data File S1 List of genomic location, annotation, p
values, and expression for the top 200 candidates SNPs
(those with lowest P values) for each of the eight
phenotypes.

(CSV)
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